Overview
- Start dateMarch or October
- DurationFull-time MSc: one year; PgDip: up to one year
- DeliveryTaught modules 50%, individual research project 50%
- QualificationMSc, PgDip
- SWAGºÏ¼¯ typeFull-time
- CampusCranfield campus
Who is it for?
Designed for those seeking a career in the design, development, operation and maintenance of power systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand. This course is suitable for graduates seeking a challenging and rewarding career in an international growth industry.
Why this course?
The MSc option in Rotating Machinery, Engineering and Management is structured to enable you to pursue your own specific interests and career aspirations. You may choose from a wide range of optional modules and select an appropriate research project. An intensive two-week industrial management course is offered which assists in achieving exemptions from some engineering council requirements. You will receive a thorough grounding in the operation of different types of rotating machinery for aeronautical, marine and industrial applications.
We have been at the forefront of postgraduate education in thermal power and gas turbine technology at Cranfield since 1946. We have a global reputation for our advanced postgraduate education, extensive research and applied continuing professional development.
This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.
Informed by industry
Our industry partners help support our students in a number of ways - through guest lectures, awarding student prizes, recruiting course graduates and ensuring course content remains relevant to leading employers.
The Industrial Advisory Panel meets annually to maintain course relevancy and ensure that graduates are equipped with the skills and knowledge required by leading employers. Knowledge gained from our extensive research and consultancy activity is also constantly fed back into the MSc programme. The Thermal Power and Propulsion MSc Industrial Advisory Panel is comprised of senior engineers from companies such as:
- EASA,
- EasyJet,
- RMC,
- Rolls-Royce,
- Senior Consultant,
- Uniper Technologies.
Course details
The course consists of approximately eight to twelve taught modules and an individual research project. The taught programme consists of eight compulsory modules and up to four optional modules. The modules are generally delivered from October to April.
Course delivery
Taught modules 50%, individual research project 50%
Individual project
You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.
Previous individual research projects have included:
- Performance and economic study on the viability of combined cycle floating power barge;
- Risk-based maintenance for AZEP;
- Implementation of the nutating disk engine in high bypass turbofan;
- Load minimisation of tidal turbines;
- Gas turbine airfleet maintenance case study;
- Airfleet maintenance study;
- Advanced bottoming cycle technology;
- Cavitation simulation in centrifugal pump.
Modules
Keeping our courses up-to-date and current requires constant innovation and change. The modules we offer reflect the needs of business and industry and the research interests of our staff and, as a result, may change or be withdrawn due to research developments, legislation changes or for a variety of other reasons. Changes may also be designed to improve the student learning experience or to respond to feedback from students, external examiners, accreditation bodies and industrial advisory panels.
To give you a taster, we have listed the compulsory and elective (where applicable) modules which are currently affiliated with this course. All modules are indicative only, and may be subject to change for your year of entry.
Course modules
Compulsory modules
All the modules in the following list need to be taken as part of this course.
Combustors
Aim |
|
---|---|
Syllabus |
Introduction to GT combustor design considerations and sizing methodologies: Diffusion and pre-mixed flame characteristics; GT combustor design features and performance requirements; Design considerations and main functions of the primary, intermediate and dilution zones; Fundamental aspects of the ignition process; Sources of pressure loss; Performance criteria and requirements for pre-combustor diffusers; Faired and dump diffusers; Combustor sizing methodologies based on the pressure loss approach, combustor efficiency requirements and altitude relight requirements. Combustion efficiency: Definition of combustion efficiency and combustion efficiency requirements; Evaporation rate controlled systems – influence of fuel type, turbulence and pressure, drop size and residence time; Mixing rate controlled systems; Reaction rate controlled systems – derivation and significance of the “q” parameter. Overview of GT generated pollutants: Products of combustion and their consequences; Mechanisms of formation of GT pollutants; Effects on the environment and/or human health; Overview of limitation strategies and associated challenges; Low emissions combustion systems for aero and stationary gas turbines; Emissions legislation and targets. GT combustor heat transfer and cooling: Combustor buckling and cracking; Need for efficient methods of liner cooling; Heat transfer processes (Internal and external radiation, internal and external convection, conduction); Calculation of uncooled liner temperature; Effect of chamber variables on heat transfer terms, liner wall temperature and liner life; Film cooling techniques; Advanced wall cooling techniques; Combustor liner materials and thermal barrier coatings. GT fuels Appraise types and properties of fuels; Methodologies to calculate combustion temperatures for various fuel types, mixture strengths and pressures (both non-dissociated and dissociated). Computational methods for GT Combustors Role of CFD in combustor design and development; Application of CFD for preliminary design, prognostics and diagnostics of combustion systems. Introduction to GT afterburners: Requirement and principle of afterburning; Effects of afterburning on engine performance; General arrangement, main components and design features of afterburners; Ignition methods for GT afterburners; Control requirements and methods for engines with afterburners; Considerations for selection of convergent and convergent-divergent nozzles. |
Intended learning outcomes |
On successful competition of this module you should be able to:
|
Engine Systems
Aim |
|
---|---|
Syllabus |
Assessments of engine systems, auxiliaries, families of engines, and/or engine and component designs for both aero and stationary gas turbines are addressed by means of a 'Systems Symposium', run by the MSc class. Topics covered by the systems symposium include: intake systems for aero engines and industrial gas turbines; anti-icing systems for aeroengines and industrial gas turbines; start systems for aeroengines and industrial gas turbines; start sequences for industrial gas turbines; compressor bleed and variable guide vanes; variable geometry nozzle guide vanes; gas path sealing of aero gas turbines; noise control of gas turbines; air filtration for industrial gas turbines; compressor and turbine cleaning systems; full authority and other electronic control systems; key gas turbine component design technologies, etc. Topics may also cover design technologies of gas turbine engines and their components, different families of engine products of major gas turbine manufacturers in different countries, comparison of competitive engines, etc. The objective is to undertake an evaluation of a specified aspect of gas turbine engineering, to make a presentation and to provide a technical review paper or design and assessment on a particular subject.Another aspect of the module is that the presentations are made in a conference format which requires you to work together to plan, organise and execute the events. Outline syllabus for a few sample individual topics: • Ignition system: Requirements and problems of altitude relight. Types of system -booster coils, high frequency, high energy and their applications. • Starting Systems: Electrical systems - low and high voltage, turbine systems- cartridge, iso-propyl nitrate, fuel-air, gas turbine, low pressure air and hydraulic systems and their applications. • Air systems: requirements, methods of cooling, pressure balancing of end loads, sealing, and applications. • Preliminary design of axial high pressure compressor: requirements, design criteria, preliminary design, analysis of design results, etc. • CFM56 engines: development history, OEM, product description, key technologies, future development, etc. |
Intended learning outcomes |
On successful completion of this module you should be able to:
|
Management for Technology
Aim |
|
---|---|
Syllabus |
|
Intended learning outcomes |
On successful completion of this module you should be able to:
|
Mechanical Design of Turbomachinery
Aim |
To familiarise you with the common problems associated with the mechanical design and the lifting of the major rotating components of the gas turbine engine. |
---|---|
Syllabus |
Failure criteria: Monotonic failure criteria: proof, ultimate strength of materials. Theories of failure applied to bi-axial loads. Other failure mechanisms associated with gas turbine engines including creep and fatigue. Fatigue properties including SN and RM diagrams, the effect of stress concentration, mean stress etc. Cumulative fatigue, the double Goodman diagram technique to calculate the fatigue safety factor of gas turbine components. Methods of calculating the creep life of a component using the Larson-Miller Time-Temperature parameter. Applications: The design of discs and blades. Illustration of the magnitude of stresses in conventional axial flow blades by means of a simple desk-top method to include the effects of leaning the blade. The stressing of axial flow discs by means of a discretised hand calculation which illustrates the distribution and relative magnitude of the working stresses within a disc. The design of flanges and bolted structures. Leakage through a flanged joint and failure from fatigue. Blade vibration: Resonances. Desk top techniques for calculating the low order natural frequencies of turbomachine blades. Allowances for the effects of blade twist and centrifugal stiffening. Sources of blade excitation including stationary flow disturbance, rotating stall and flutter. Derivation of the Campbell diagram from which troublesome resonances may be identified. Allowances for temperature, pre-twist and centrifugal stiffening. Methods for dealing with resonances. Damage Mechanisms and Lifing: Fundamentals of Creep and Fatigue damage mechanisms. Material, design and operational parameters that affect creep and fatigue. Experimental and test procedures to characterise creep and fatigue damage. Classification of Fatigue-Low Cycle and High Cycle and use of appropriate methods: Strain Vs Stress Methods. Cumulative damage assessment using cycling counting and linear damage rules -Milner Approach. |
Intended learning outcomes |
On successful completion of this module you should be able to:
|
Gas Turbine Operations and Rotating Machines
Aim |
|
---|---|
Syllabus |
• An overview of the different operational regimes for gas turbine application. This explores base load, peak load, standby and backup operations, alongside their individual operational requirements. It also includes engine control modes such as operating at approximately constant exhaust gas temperature and load-following mode. Analysis of gas turbine performance and health using machine sensor data from actual operation is also a key part. This part also highlights the use and impact of ancillary equipment (air filtration and compressor washing systems) in improving the performance and extending the operating hours of gas turbine machines. Gas turbine operational flexibility for back-up of renewable power. Steam Turbine Operations: • Steam turbine fundamentals, applications and selection. This includes an overview of steam turbine plants operating on fossil fuel - combined cycle gas turbines (CCGT) and combined heat and power (CHP) operations. It also covers aspects of heat recovery systems, condensers, pumps and other auxiliary equipment. Diesel Engines for Heat and Power: • Diesel engine fundamentals; theory and principles. This includes 2-stroke (crosshead engine) and 4-stroke (trunk piston) types, their installation and operations. Utilisation of diesel engine waste heat recovery for district heating hot water systems, cooling systems using chiller and fresh water generation are the common applications explored. Diesel engine fuels and the means of controlling exhaust emissions are included. |
Intended learning outcomes |
On successful completion of this module you should be able to:
|
Turbomachinery and Blade Cooling
Aim |
To familiarise you with compressor and turbine aerodynamic design and performance by instruction, investigation and example. To introduce you to the technology of gas turbine blade cooling through analytical and practical approaches of heat transfer principles, convection cooling, impingement film transpiration cooling and liquid cooling. |
---|---|
Syllabus |
Thermofluids: Introduction to aerodynamics, thermofluids, and compressible flows. Compressor Design and Performance Overall performance: Fundamentals of axial flow compressors. Overall performance, achievable pressure ratio and efficiency. The effect of Reynolds number, Mach number, and incidence. Definition of isentropic and polytropic efficiency, effect of pressure ratio, performance at constant speed, surge and surge margin definitions, running line, choking effects. The axial compressor stage: Stage loading and flow parameters, limitation in design on pitch line basis. Definition and choice of reaction at design, effect on stage efficiency. Loss sources in turbomachines and loss estimation methods. The ideal and real stage characteristic, stall and choke. The free vortex solution, limitations due to hub/tip ratio. Off-design performance Choice of overall annulus geometry, axial spacing, aspect ratio, limitations of rear hub/tip ratio. Compressor blading: selection of blade numbers, aspect ratio and basic blade profiling. Compressor design example: Multi-stage compressor design example carried out for a HPC. Turbine Design and Performance Overall performance: the expansion process and characteristics, annulus layout and design choices, choice of stage loading and flow coefficient, engine overall performance requirements, overall annulus geometry and layout; rising line, constant mean diameter and falling line. The axial turbine stage: Aerodynamic concepts and parameters, velocity triangles, reaction, stage loading, flow coefficients. The ideal and real characteristic. Design for maximum power: effect of choking and change of inlet temperature and pressure. Stage efficiency, overtip leakage, profile losses, correlations. Three-dimensional design aspects. Radial equilibrium and secondary flows. Turbine blading: choice of base profile, blade numbers and aspect ratio. Zweiffel's and alternative lift coefficients. Turbine Design Example: An aerodynamic design example is carried out for a HPT Heat Transfer Principles: Brief review of heat transfer principles and physical significance of non-dimensional groupings. Conditions around blades, boundary layers, external heat transfer coefficient distribution, effect of turbulence. Root cooled blades and NGVs, analytical and numerical methods of determining spanwise temperature distribution. Fibre strengthened and nickel base alloys. Need for high turbine entry temperature: effect on engine performance. Development of materials, manufacturing processes and cooling systems. Convection Cooling: Convectively cooled aerofoils: analytical approach for metal and cooling air spanwise temperature distribution. Cooling passage geometry and heat transfer characteristics. Cooling efficiency, cooling effectiveness and mass flow function: application at project design stage for determining metal and cooling air temperatures. Methods for optimising cooling system design: secondary surfaces and multipass. Internal temperature distribution of cooled aerofoils: calculations, comparisons with experimental results. Impingement, Film and Transpiration Cooling: Principles steady state and transient performance, characteristics, advantages, limitations, comparison with convection cooling. Cooling air feed and discharge systems. Integration of cooled turbine with aerodynamic performance and main engine design. Co-ordination of design responsibilities. Example of cooled turbine stage design. Liquid Cooling: Liquid cooling: principles, advantages and limitations, practical examples. |
Intended learning outcomes |
On successful completion of this module you should be able to:
|
Gas Turbine Performance, Simulation and Diagnostics
Aim |
To inform you of the different types of gas turbine engines; their applications, on-design, off-design and transient performance. To provide you with the ability to undertake gas turbine component performance calculations, diagnostics and to perform evaluations of gas turbine performance, and deterioration. |
---|---|
Syllabus |
Gas Turbine Types and Applications Effect of design parameters such as pressure ratio and turbine temperature on the basic gas turbine cycle. Modifications of the basic Brayton cycle, compounding, intercooling, reheating, heat exchange, bypass, and fan cycles. Simulation of the above. Performance and Simulation Design point performance of turbojet, turbofan and turboshaft cycles, effect of bypass ratio. Off design performance, effect of ambient temperature, altitude, throttle setting and flight speed. Non-dimensional representation. Gas turbine simulation. Effects of bleeds and power offtakes. Compressor turbine matching. Gas turbine degradation. Simulation and diagnostics of the above. Component maps. Surge alleviation, performance improvements, steady-state, and transient performance. Off-design performance calculations and iteration techniques Accelerations, decelerations, effects on surge margin. Transients of single shaft and multi-shaft engines. Transient performance simulation. Effects of heat transfer on transient performance. Software used for gas turbine performance simulation: TURBOMATCH Diagnostics and Monitoring. Description of gas turbine performance degradation and faults. Description of most used gas turbine condition monitoring techniques. Software used for diagnostics: PYTHIA |
Intended learning outcomes |
On successful completion of this module you should be able to:
|
Teaching team
You will be taught by experienced academic staff at Cranfield with many years of industrial experience. Our teaching team are active researchers as well as tutors and have extensive experience of gas turbine design, in both industrial and research and development environments. Continuing close collaboration with major engine manufacturers in both the SWAGºÏ¼¯ and overseas, through teaching and research, ensures that this course maintains the relevance and professionalism for which it is internationally renowned. Knowledge gained working with our clients is continually fed back into the teaching programme, to ensure that you benefit from the very latest knowledge and techniques affecting industry. The Programme Director is Dr Uyioghosa Igie.
Accreditation
The Thermal Power and Propulsion MSc is accredited by and the on behalf of the Engineering Council as meeting the requirements for further learning for registration as a Chartered Engineer (CEng). Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to show that they have satisfied the educational base for CEng registration. Please note accreditation applies to the MSc award and PgDip do not meet in full the further learning requirements for registration as a Chartered Engineer.
Your career
Over 90% of the graduates of the course have found employment within the first year of course completion. Many of our graduates are employed in the following industries:
- Gas turbine engine manufacturers,
- Airframe manufacturers,
- Airline operators,
- Regulatory bodies,
- Aerospace/energy consultancies,
- Power production industries,
- Academia: doctoral studies.
Cranfield’s Career Service is dedicated to helping you meet your career aspirations. You will have access to career coaching and advice, CV development, interview practice, access to hundreds of available jobs via our Symplicity platform and opportunities to meet recruiting employers at our careers fairs. Our strong reputation and links with potential employers provide you with outstanding opportunities to secure interesting jobs and develop successful careers. Support continues after graduation and as a Cranfield alumnus, you have free life-long access to a range of career resources to help you continue your education and enhance your career.
How to apply
Click on the ‘Apply now’ button below to start your online application.
See our Application guide for information on our application process and entry requirements.